Mariam A. Al-Shiekh ${ }^{1}$, Abdellatif M. Salah El-Din ${ }^{2}$, Ebtisam A. Hafez ${ }^{2 *}$, and Mohamed H. Elnagdi2* ${ }^{*}$
${ }^{1}$ Department of Chemistry, Girls College of Education, Jeddah, P.O. 334 Jeddah 21341, Kingdom of Saudi Arabia
${ }^{2}$ Department of Chemistry, Faculty of Science, Cairo University, Giza-Egypt Received November 4, 2003

Abstract

A novel synthesis of arylpyrazole, isoxazole, dialkyl 1,6-dihydropyridazine 5,6-dicarboxylate derivatives and a new one-step synthesis of azolopyrimidines under microwave-assisted conditions are reported. J. Heterocyclic Chem., 41, 647 (2004).

Some time ago an easy synthesis of 2-arylhydrazonopropanals has been reported from our laboratories [1-3]. Since that time we have been involved in investigations aimed at exploring synthetic potentialities of this class of compounds [1-5]. In a continuation to this work we report the synthesis of 2-arylhydrazonals 2a-h via coupling 1a,b with aromatic diazonium salts. The reactivity of 2a-h toward nitrogen nucleophiles by microwave heating "green technology" [6,7] in the absence of solvent is reported. Results are compared with those obtained from conventional heating utilizing procedures similar to those reported earlier [1-5,8-11]. Moreover further examples of the novel 1,6-dihydropyridazine-5,6-dicarboxylate via reacting 2 -arylhydrazonals with dimethyl acetylenedicarboxylate and triphenylphosphine [4] is reported. Thus, 2ah were obtained in $50-80 \%$ yields via coupling 1a,b with aromatic diazonium salts. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the products indicated that they exist at least in DMSO solution as mixtures of the anti form 2 and syn form 3. The anti form generally predominated (Figure 1).

Figure 1

Compounds 2a-h reacted with phenylhydrazine in refluxing ethanol for one hour to yield the phenylhydrazones 4a-h. Phenylhydrazones $\mathbf{4 b}, d, f$ could be also obtained on heating
of $\mathbf{2 b , d , f}$ and phenylhydrazine in a microwave oven for 5-10 minutes at full power. Products of microwave reaction were found to be more pure in crude form and to be formed in better yields. Reacting 2a, c with hydrazine hydrate also afforded the hydrazones $\mathbf{4 i} \mathbf{j}$. While hydrazones of structure similar to $\mathbf{4}$ were reported earlier to cyclize readily into pyrazoles [2], cyclization of 4a-d proceeded with difficulty. Only after long reflux in pyridine 4-8 hours, could $\mathbf{4 c}, \mathbf{g}$ be cyclized into 5a,b. However, the hydrazones $\mathbf{4 i} \mathbf{j} \mathbf{j}$, on the other hand, cyclized into $5 \mathbf{c}, \mathbf{d}$ on reflux in pyridine for 4 hours.

The reaction of $\mathbf{2 a}-\mathbf{d}$ with hydroxylamine hydrochloride in ethanolic sodium acetate has afforded, similar to earlier reports on arylhydrazones [2,5], oximes 6a-d. Compounds $\mathbf{6 a , b}$ were also obtained on treatment of $\mathbf{2 a}, \mathbf{b}$ with hydroxylamine hydrochloride and sodium carbonate in a microwave oven at full power ($c f$. Table 1). Compounds 6a-d cyclized into isoxazoles $\mathbf{7 a}$-d on reflux in acetic anhydride. In contrast to this 2c afforded the nitrile $\mathbf{8}$ on treatment with hydroxylamine in acetic acid and in the presence of ammonium acetate in a microwave oven. It is believed that the initially formed oxime is acylated to yield 9 under these conditions and readily then underwent a thermal pericyclic elimination of acetic acid via a six membered transition state (Figure 2).

Compound 2a condensed with 5-amino- $1 H$ 1,2,4-triazole 10a to yield 11a whose structure was established by single crystal X-ray diffraction (Figure 3). Similarly, condensation of aminopyrazoles 10b-d with $\mathbf{2 b}, \mathbf{c}$ afforded the pyrazolo[1,5-a]pyrimidines $\mathbf{1 1 b} \mathbf{b}$. It is believed that 10ad initially condense with $\mathbf{2}$ to yield $\mathbf{1 2}$ which then cyclises into 11 (Figure 4).

The reaction of 2a,c with 2-aminobenzimidazole (13) afforded a product that was assigned to structure 14 rather than $\mathbf{1 5}$ based on NOE difference that revealed that the ethyl function and benzimidazole H are spatially proximal. The ethylpyridazine carboxylate $\mathbf{1 6}$ could be readily obtained via condensing 2c with diethylmalonate in ethanolic piperidine (Figure 5).
In a previous work [4] it has been reported that the reaction of 2-arylhydrazonals with dimethylacetylene dicarboxylate

$$
\begin{array}{rlr}
\text { 5a, } \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; & \mathrm{R}=\mathrm{Et} ; & \mathrm{R}_{1}=\mathrm{Ph} \\
\text { b, } \mathrm{Ar}=4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} ; & \mathrm{R}=4-\mathrm{CH} \mathrm{COC}_{6} \mathrm{H}_{4} ; \mathrm{R}_{1}=\mathrm{Ph} \\
\text { c, } \mathrm{Ar}=\mathrm{Ph} ; & \mathrm{R}=\mathrm{Et} ; & \mathrm{R}_{1}=\mathrm{H} \\
\text { d, } \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; & \mathrm{R}=\mathrm{Et} ; & \mathrm{R}_{1}=\mathrm{H}
\end{array}
$$

$$
\begin{aligned}
& \text { 4a, } \mathrm{Ar}=\mathrm{Pl} ; \quad \mathrm{R}=\mathrm{Et}, \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { b, } \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} ; \quad \mathrm{R}=\mathrm{Et} ; \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { c, } \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \quad \mathrm{R}=\mathrm{Et}, \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { d, } \mathrm{Ar}=4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{Et}, \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { e, } \mathrm{Ar}=\mathrm{Ph} ; \quad \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} ; \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { f, } \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \quad \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} ; \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { g, } \mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} ; \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} ; \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { h, } \mathrm{Ar}=2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} ; \mathrm{R}=4-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} ; \mathrm{R}_{1}=\mathrm{Ph} \\
& \text { i, } \mathrm{Ar}=\mathrm{Ph} ; \quad \mathrm{R}=\mathrm{Et} ; \mathrm{R}_{1}=\mathrm{H} \\
& \text { j, } \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \quad \mathrm{R}=\mathrm{Et} ; \mathrm{R}_{1}=\mathrm{H}
\end{aligned}
$$

Figure 2

Figure 3. Molecular structure of 11a with atoms labeling scheme.

Figure 4
for which structures 18-20 seemed possible. Structures 19,20 could be readily ruled out based on ${ }^{1} \mathrm{H}$ NMR that revealed the absence of signals either for NH or ring CH_{2} (Figure 6).
Thus, the structure $\mathbf{1 8}$ was established as the reaction product. Compound $\mathbf{1 8}$ is assumed to be formed via initial addition of the ylide "formed by adding triphenyl phosphine to the acetylenedicarboxylate" to hydrazone 2 yielding 17 and then elimination of triphenylphosphine oxide to

13

14
a, $\mathrm{Ar}=\mathrm{Ph} ; \mathbf{b}, \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

16

Table 1
Comparison Between Reaction Times and Yields Obtained from Conventional and Microwave Heating

	Conventional Δ		Microwave Δ	
Compd	Yield (\%)	Time (min.)	Yield (\%)	Time (min.)
4b	71	60	89	10
4d	70	60	90	5
4f	71	60	82	10
$\mathbf{6 a}$	70	240	86	10
6b	60	240	85	5
11a	65	360	97	2
11b	79	360	99	2
14a	60	360	95	2

pellets on a Pye Unicam SP 3-300 Spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in hexadeuterated dimethylsulfoxide (DMSO-d ${ }_{6}$) or deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ at 200 or 300 MHz on a Varian Gemini NMR spectrometer using tetramethylsilane (TMS) as an internal reference and results are expressed as δ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Elemental analyses were carried out at the Microanalytical center of Cairo University.

Preparation of Compounds 2a-h.

General Procedure.

A cold solution of aryldiazonium salt (10 mmol) was prepared by adding a solution of sodium nitrite (10 mmol into $\mathrm{H}_{2} \mathrm{O}$) to a cold solution of the aromatic amine hydrochloride or heterocyclic amine derivatives with stirring. The resulting solution of the aryldiazonium salt was added to a cold solution of 1-dimethyl-aminopent-1-en-3-one (1a) ($1.27 \mathrm{~g}, 10 \mathrm{mmol}$) or 1-(4-acetylphenyl)-3-dimethylaminopropenone (1b) in ethanol (50 $\mathrm{ml})$ containing sodium acetate (5 g). The reaction mixture was stirred at room temperature for 30 min . The solid product, so formed, was collected by filtration, washed with water and crystallized from the proper solvent.

3-Oxo-2-(phenylhydrazono)pentanal (2a).

This compound was obtained in 70% yield; mp $93{ }^{\circ} \mathrm{C}$; red crystals from dilute ethanol, IR (KBr): v 3500(br NH), 1680(CO aldehyde), $1648 \mathrm{~cm}^{-1}$ (CO ketone); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.1$ (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.9(q, 2H, CH 2), $7.3-7.4(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) 7.6(\mathrm{~d}, 2 \mathrm{H}$, Ar-H), $9.9,9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 14.1,14.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}$ (EI, 70 EV): m / z 203(32.6\%) [M-1] ${ }^{+}$.
Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (204.23): C, 64.69; H, 5.92; N , 13.72 \%. Found: C, 64.80; H, 5.89; N, 13.60.

3-Oxo-2-(p-tolylhydrazono)pentanal (2b).
This compound was obtained in 72% yield, mp $133^{\circ} \mathrm{C}$; orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.1(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.0\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.3-8.6(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 9.6, 9.9 (s, 1H, CHO), 14.5, 15.0(s, 1H, NH); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 218$ (87.2\%) (M^{+}).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ (218.25): C, 66.04; H, 6.47; N, 12.84 \%. Found: C, $66.00 ;$ H, $6.49 ;$ N, 13.00 .

3-Oxo-2-(4-Nitrophenylhydrazono)pentanal (2c).

This compound was obtained in 72% yield, mp $125{ }^{\circ} \mathrm{C}$; red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$,
2.9 (q, 2H, CH ${ }_{2}$), 6.7-7.9 (m, 4H, Ar-H), 9.2, 9.8 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 13.9, 14.5 (s, 1H, NH); MS (EI, 70 EV): m/z 249 (34.1\%) (M+).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ (249.22): C, $53.01 ; \mathrm{H}, 4.45$; N , 16.86 \%. Found: C, $53.20 ;$ H, $4.50 ;$ N, 16.75.

3-Oxo-2-(4-Methoxyphenylhydrazono)pentanal (2d).
This compound was obtained in 72% yield, $\mathrm{mp} 120^{\circ} \mathrm{C}$; red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.09(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $2.8\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.6(d, 2H, Ar-H), 9.4, 9.9(s, 1H, CHO), 14.3, 14.7 (s, 1H, NH); MS (EI, 70 EV): $m / z 234$ (15.2%) (M^{+}).
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (234.25): C, $61.53 ; \mathrm{H}, 6.02 ; \mathrm{N}$, 11.96 \%. Found: C, $61.35 ;$ H, 6.09 ; N, 11.77.

3-(4-Acetylphenyl)-3-oxo-2-(Phenylhydrazono)propionaldehyde (2e).
This compound was obtained in 70% yield; mp $153^{\circ} \mathrm{C}$; yellow crystals from dilute ethanol, IR (KBr): v $3118(\mathrm{NH}), 1660,1641$ $\mathrm{cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.4-7.9(\mathrm{~m}$, 9H, Ar-H), 9.5, 10.0 (s, 1H, CHO), 13.2, 14.2 (s, 1H, NH); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 293$ (32.9%.) [M-1]+.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (294.31): C, 69.38; H, 4.79; N, 9.52 \%. Found: C, 69.19; H, 4.69; N, 9.42.

3-(4-Acetylphenyl)-3-oxo-2-(4-nitrophenylhydrazono)propionaldehyde (2f).
This compound was obtained in 72% yield, mp $149{ }^{\circ} \mathrm{C}$; red crystals from ethanol/dioxan (1:1), ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6$ (s, 3H, CH3), 6.7-7.9 (m, 8H, Ar-H), 9.6, $10.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$, 12.9, 14.0 (s, 1H, NH); MS (EI, 70 EV): m/z 339 (16.5%) (M^{+}).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$ (339.30): C, 60.18; H, 3.86; N, 12.38 \%. Found: C, $60.21 ;$ H, 3.78 ; N, 12.39 .

3-(4-Acetylphenyl)-2-(4-methoxyphenylhydrazono)-3-oxopropionaldehyde ($\mathbf{2 g}$).
This compound was obtained in 70% yield, mp $136^{\circ} \mathrm{C}$; red crystals from methanol, IR (KBr): v $3424(\mathrm{NH}), 1714,1676 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.8(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.0 (d, 2H, Ar-H), 7.4 (d, 2H, Ar-H), 7.9 (d, 2H, Ar-H), 8.1 (d, 2H, Ar-H), 9.6, 10.0 (s, 1H, CHO), 13.2, 14.4 (s, 1H, NH); MS (EI, 70 EV): m / z 324(17.1\%) (M^{+}).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.33): C, 66.66; H, 4.97; N , 8.64 \%. Found: C, 66.56 ; H, 4.91; N, 8.68.

3-(4-Acetylphenyl)-2-(2-methoxyphenylhydrazono)-3-oxo-propionadehyde (2h).

This compound was obtained in 85% yield, mp $139^{\circ} \mathrm{C}$; orange crystals from ethanol/dioxan (1:1), ${ }^{1}$ H NMR (d_{6}-DMSO): $\delta=2.6$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.7 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.3-8.1 (m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 9.6, 10.0 (s, 1H, CHO), 13.2, 14.3 (s, 1H, NH); MS (EI, 70 EV): m/z 324 (47\%) (M^{+}).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.33): C, 66.66; H, 4.97; N, 8.64%. (Found: C, 66.65; H, 4.92; N, 8.55.

Preparation of Compounds $\mathbf{4 a - j}$.

General Procedures.
Method A, Thermal Reaction.
A mixture of 2-arylhydrazonopentanals (2a-d) or arylhydrazonopropanal ($2 \mathrm{e}-\mathrm{h}$) (10 mmol) with phenylhydrazine $(1.08 \mathrm{~g}, 10$ $\mathrm{mmol})$ or hydrazine hydrochloride ($1.04 \mathrm{~g}, 10 \mathrm{mmol}$) was
refluxed in ethanol for 1 h . The solid product obtained was collected by filtration and crystallized from the proper solvent.

Method B, Microwave Heating.
A mixture of 2-arylhydrazonopentanals ($\mathbf{2 b}, \mathbf{d}$) or arylhydrazonopropanal ($\mathbf{2 f}$) (10 mmol) with phenylhydrazine ($1.08 \mathrm{~g}, 10$ mmol) was heated in a domestic microwave oven at full power for 10 minutes. The resulting product was collected by filtration, washed with ethanol and crystallized from the proper solvent (mp mixed mp and TLC).

1, 2-Bis-(phenylhydrazono)pentan-3-one (4a).

This compound was obtained in 70% yield, mp $236{ }^{\circ} \mathrm{C}$; red crystals from ethanol, IR (KBr): v $3255(\mathrm{NH}), 1620 \mathrm{~cm}^{-1}(\mathrm{CO})$; ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.08\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.1-7.4 (m, 10H, Ar-H), 8.2 (s, 1H, H-1), 10.8 (s, 1H, NH), 13.1 (s, 1H, NH); MS (EI, 70 EV): m/z 294(62.9\%) (M+).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ (294.36): C, 69.37; H, 6.16; N, 19.03\%. (Found: C, 69.41; H, 6.20; N, 19.01.

1-(Phenylhydrazono)-2-(p-tolylhydrazono)pentan-3-one (4b).

This compound was obtained in 71% yield by Method A after 60 min. reflux while Method B yielded 89% after heating for 10 \min in a domestic microwave oven at full power. $\mathrm{Mp} 244{ }^{\circ} \mathrm{C}$; dark orange crystals from ethanol/dioxan (1:1), ${ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}{ }^{-}$ DMSO): $\delta=1.1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.9\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.8-7.3 (m, 9H, Ar-H), 8.2 (s, 1H, H-1), 10.7 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 13.1 (s, $1 \mathrm{H}, \mathrm{NH}$). MS (EI, 70 EV): m/z 308(38.2\%) (M^{+}).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (308.38): C, $70.11 ; \mathrm{H}, 6.54$; N , 18.17%. Found: C, $70.00 ;$ H, 6.49 ; N, 17.98.
1-(Phenylhydrazono)-2-(4-nitrophenylhydrazono)pentan-3-one (4c).

This compound was obtained in 65% yield, mp $131^{\circ} \mathrm{C}$; orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), 2.9 (q, 2H, CH2), 6.8-7.3 (m, 9H, Ar-H), 8.2 (s, 1H, H-1), 10.7 (s, 1H, NH), 13.2 (s, 1H, NH); MS (EI, 70 EV): m/z 339 $\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3}$ (339.35): C, 60.17; H, 5.05; N, 20.64%. Found: C, $60.25 ;$ H, $5.00 ;$ N, 20.79.

1-(Phenylhydrazono)-2-(4-methoxyphenylhydrazono)pentan-3one ($\mathbf{4 d}$).

This compound was obtained in 70% yield by Method A, after 60 min. reflux while Method B yielded 90% after heating for 5 min in a domestic microwave oven at full power. $\mathrm{Mp} 230^{\circ} \mathrm{C}$; red crystals from ethanol/dioxan ($1: 1$), ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.1$ (t, 3H, CH3), $2.9\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.8-7.3(\mathrm{~m}$, 9H, Ar-H), 8.2 (s, 1H, H-1), 10.7 (s, 1H, NH), 13.2 (s, 1H, NH); ${ }^{13} \mathrm{C}$ NMR: $\delta 9.4(\mathrm{CH} 3), 29.4\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{OCH}_{3}\right), 112.7,115.8$, 116.5, 120.6, 130.1, 132.0, 132.3, 156.4 (phenyl carbon), 136.9 (C-1), 144.5 (C-2); MS (EI, 70 EV): m/z 325 (34.2\%) [M+1] ${ }^{+}$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ (324.38): C, $66.65 ; \mathrm{H}, 6.21 ; \mathrm{N}$, 17.27%. Found: C, 66.58; H, 6.30; N, 17.32.

1-(4-Acetylphenyl)-2,3-bis-(phenylhydrazono)propan-l-one (4e).
This compound was obtained in 69% yield, mp $239^{\circ} \mathrm{C}$; orange crystals from ethanol/dioxan (1:1), IR (KBr): v 3263 (NH), 1620 $\mathrm{cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7-7.4(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.4$ (s, 1H, H-3), 9.5 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 11.0 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); MS (EI, 70 EV): m/z 384 (14.2\%) (M^{+}).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ (384.44): C, 71.86; H, 5.24; N, 14.57%. Found C, $71.80 ; \mathrm{H}, 5.32 ; \mathrm{N}, 14.60$.

1-(4-Acetylphenyl)-2-(4-nitrophenylhydrazono)-3-(phenylhy-drazono)propan-1-one (4f).
This compound was obtained in 71% yield by Method A, after 60 min. reflux while Method B yielded 82% after heating for 10 min in a domestic microwave oven at full power. $\mathrm{Mp} 210{ }^{\circ} \mathrm{C}$; dark red crystals ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6$ (s, 3 H , CH_{3}), 7.1-8.3 (m, 13H, Ar-H), 8.3 (s, 1H, H-3), 11.2 (s, 1H, NH), 13.4 (s, 1H, NH); MS (EI, 70 EV): m/z. $429\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ (429.43): C, 64.33; H, 4.46; N, 16.31%. Found: C, 64.24; H, 4.42; N, 16.23.

1-(4-Acetylphenyl)-2-(4-methoxyphenylhydrazono)-3-(phenylhydrazono) propan-l-one ($\mathbf{4 g}$).

This compound was obtained in 70% yield, mp $175{ }^{\circ} \mathrm{C}$; red crystals from ethanol/dioxan (1:1), ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.7(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} 3), 7.01-8.0(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.5(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-3), 9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. MS (EI, 70 EV$): \mathrm{m} / \mathrm{z}$ $414\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ (414.46): C, 69.55; H, 5.35 ; N, 13.52 \%. Found: C, 69.72; H, 5.29; N, 13.50.

1-(4-Acetylphenyl)-2-(2-methoxyphenylhydrazono)-3-(phenyl-hydrazono)propan-l-one (4h).

This compound was obtained in 70% yield, mp $188^{\circ} \mathrm{C}$; dark orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=2.6$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.0(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} 3), 6.9-8.4(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.3(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-3), 10.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 13.3$ (s, 1H, NH); MS (EI, 70 EV$): \mathrm{m} / \mathrm{z}$ $415(\mathrm{M}+1)^{+}$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ (414.46): C, 69.55; H, 5.35; N , 13.52%. Found: C, $69.49 ; \mathrm{H}, 5.25 ; \mathrm{N}, 13.49$.

1-Hydrazono-2-(phenylhydrazono)pentan-3-one (4i).

This compound was obtained in 77% yield, mp $101^{\circ} \mathrm{C}$; orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.07(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.44\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.4-7.1\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{NH}_{2}\right), 8.3(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-1), 12.6$ (br s, 1H, NH); MS (EI, 70 EV): $m / z 218\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}(218.26): \mathrm{C}, 60.53 ; \mathrm{H}, 6.47$; N , 25.67 \%. Found: C, 60.60; H, 6.52; N, 25.58.

1-Hydrazono-2-(4-nitro-phenylhydrazono)pentan-3-one (4j).
This compound was obtained in 65% yield, mp $150{ }^{\circ} \mathrm{C}$; red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=1.2(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.7-7.9\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{NH}_{2}\right), 8.1(\mathrm{~s}, 1 \mathrm{H}$, H-1), 13.6 (br s,1H, NH); MS (EI, 70 EV): m/z 263 (M+).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$ (263.25): C, $50.19 ; \mathrm{H}, 4.98$; N , 26.60 \%. Found: C, 50.22; H, 5.05; N, 26.65.

Preparation of Pyrazole Derivatives 5a-d.

General Procedure.
A solution of compounds $\mathbf{4 c}, \mathbf{g}, \mathbf{i}, \mathbf{j}(10 \mathrm{mmol})$ in pyridine (10 ml) were refluxed for $4-8$ hours. The solid products obtained were collected by filtration and crystallized from ethanol to afford 5a-d respectively.

5-Ethyl-4-(4-nitrophenylazo)-1-phenylpyrazole (5a).
This compound was obtained in 70% yield, mp $153-157{ }^{\circ} \mathrm{C}$; dark red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=1.3(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.4-7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.9(\mathrm{~d}, 2 \mathrm{H}$,

Ar-H), 8.09 (s, 1H, H-3), 8.3 (d, 2H, Ar-H); MS (EI, 70 EV): m/z. $321\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$ (321.34): $\mathrm{C}, 63.54 ; \mathrm{H}, 4.70 ; \mathrm{N}$, 21.79%. Found: C, 63.47; H, 4.77; N, 21.88.

5-(4-Acetylphenyl)-4-(4-methoxyphenylazo)-1-phenylpyrazole (5b).

This compound was obtained in 60% yield, $\mathrm{mp} 206{ }^{\circ} \mathrm{C}$; pale brown crystals from ethanol, IR (KBr): $v 1681 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO $): \delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.8-7.9(\mathrm{~m}$, 13H, Ar-H), 7.5 (s, 1H, H-3); MS (EI, 70 EV): $m / z 397[\mathrm{M}+1]^{+}$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ (396.45): C, $72.71 ; \mathrm{H}, 5.08 ; \mathrm{N}$, 14.13%. Found: C, $72.66 ; \mathrm{H}, 5.14 ; \mathrm{N}, 14.24$.

3-Ethyl-4-(phenylazo)pyrazole (5c).

This compound was obtained in 70% yield, $\mathrm{mp} 90^{\circ} \mathrm{C}$; brown crystals from ethanol, IR (KBr): v $3398 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}{ }^{-}\right.$ DMSO): $\delta=1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.99\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.4-7.7(\mathrm{~m}, 5 \mathrm{H}$, Ar-H), 7.75 (s, 1H, H-5), 13.19 (br s, 1H, NH); MS (EI, 70 EV): $m / z 200\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4}$ (200.24): $\mathrm{C}, 65.98 ; \mathrm{H}, 6.04 ; \mathrm{N}$, 27.98%. Found: C, 66.01; H, 6.09; N, 27.85.

3-Ethyl-4-(4-nitrophenylazo)pyrazole (5d).
This compound was obtained in 75% yield, mp $115^{\circ} \mathrm{C}$; dark brown crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=1.4(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.4-7.7(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.9(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 5), 13.3 (br s, 1H, NH); MS (EI, 70 EV): m/z 245 (M+).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$ (245.24): C, $53.87 ; \mathrm{H}, 4.52 ; \mathrm{N}$, 28.56%. Found: C, 54.00; H, 4.41; N, 28.44.

Preparation of Compounds 6a-d.
General Procedures.
Method A, Thermal Reaction.
A warm solution of hydroxylamine hydrochloride $(0.69 \mathrm{~g}, 10$ $\mathrm{mmol})$ and sodium carbonate $(1.26 \mathrm{~g}, 12 \mathrm{mmol})$ in $(10 \mathrm{ml})$ water were added to a stirred solution of the arylhydrazonopentanals $(\mathbf{2 a - d})(10 \mathrm{mmol})$ in ethanol $(4 \mathrm{ml})$ The reaction mixture was stirred at room temperature for 4 h . The oximes soon separated as semisolid crystals that were solidified by cooling in crushed ice. The solid product, so formed, was collected by filtration and crystallized from the proper solvent.
Method B, Microwave Heating.
A mixture of hydroxylamine hydrochloride ($0.69 \mathrm{~g}, 10 \mathrm{mmol}$), sodium carbonate ($1.26 \mathrm{~g}, 12 \mathrm{mmol}$) and arylhydrazonopentanals $(\mathbf{2 a}, \mathbf{b})(10 \mathrm{mmol})$ was placed in the microwave oven and heated for 5 to 10 min at full power. The resulting product was washed with ethanol and crystallized from the proper solvent.

3-Oxo-2-phenylhydrazonopentanal-l-oxime (6a).

This compound was obtained in 70% yield by Method A, after 240 min. reflux while Method B yielded 86% after heating for 10 min in a domestic microwave oven at full power; $\mathrm{mp} 180^{\circ} \mathrm{C}$; red crystals from dilute ethanol; IR (KBr): v $3240(\mathrm{OH}), 3210 \mathrm{~cm}^{-1}$ $(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=1.06\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.9(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 7.3-7.4 (m, 5H, Ar-H), $8.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 9.99 (s, 1H, oxime-H); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 219\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (219.24): C, $60.26 ; \mathrm{H}, 5.98$; N , 19.17%. Found: C, 60.09; H, 5.99; N, 19.30.

3-Oxo -2-(p-tolylhydrazono)pentanal-1-oxime ($\mathbf{6 b}$).

This compound was obtained in 60% yield by Method A, after 240 min . reflux while Method B yielded 85% after heating for 5 min in a domestic microwave oven at full power, $\mathrm{mp} 199^{\circ} \mathrm{C}$; orange crystals from ethanol; IR (KBr): v $3385(\mathrm{OH}), 3145(\mathrm{NH})$, $1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.06\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.3$ (s, 3H, CH3), 2.9 (q, 2H, CH2), 7.22 (s, 4H, Ar-H), 8.3 (s, 1H, $\mathrm{H}-1), 11.8$ (s, 1H, NH), 12.5 (s, 1H, oxime-H); MS (EI, 70 EV): $m / z 233\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (233.27): C, 61.79; H, 6.48; N , 18.01%. Found: C, $61.80 ;$ H, $6.38 ;$ N, 17.89.

2-(4-Nitrophenylhydrazono)-3-oxopentanal-1-oxime ($\mathbf{6 c}$).
This compound was obtained in 60% yield, $\mathrm{mp} 163{ }^{\circ} \mathrm{C}$; red crystals dilute AcOH, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.07$ ($\mathrm{t}, 3 \mathrm{H}$, CH_{3}), 2.9 (q, 2H, CH2), 6.7-7.9 (m, 4H, Ar-H), 8.1 (s, 1H, H1), 10.9 (s, 1H, NH), 11.6 ($\mathrm{s}, 1 \mathrm{H}$, oxime-H); MS (EI, 70 EV): m/z 264(M+).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$ (264.24): C, $50.00 ; \mathrm{H}, 4.58 ; \mathrm{N}$, 21.20%. Found: C, $49.81 ;$ H, 4.49 ; N, 21.00.

2-(4-Methoxyphenylhydrazono)-3-oxopentanal-1-oxime ($\mathbf{6 d}$).
This compound was obtained in 60% yield, mp $120^{\circ} \mathrm{C}$; yellow green crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.06$ (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.9 (q, 2H, CH2), 3.7 (s, 3H, OCH_{3}), 6.99 (d, $2 \mathrm{H}, \mathrm{Ar}-$ H), 7.3 (d, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.3 (s, 1H, H-1), 11.8 (s, $1 \mathrm{H}, \mathrm{NH}$), 12.5 (s , 1H, oxime-H); MS (EI, 70 EV): m/z 249(M+).
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (249.27): C, 57.82; H, 6.07; N, 16.86%. Found: C, $57.90 ;$ H, 5.97 ; N, 16.76.

Preparation of Isoxazole Derivatives 7a-d.
General Procedure.
Each of oximes $\mathbf{6 a - d}(10 \mathrm{mmol})$ was refluxed in acetic anhydride (10 ml) for 4 h , and then left to cool at room temperature. The solid product separated as pale yellow crystals that were collected by filtration and recrystallized from the proper solvent.

5-Ethyl-4-(phenylazo)isoxazole (7a).

This compound was obtained in 69% yield, $\mathrm{mp} 73^{\circ} \mathrm{C}$; pale red crystals from $\mathrm{AcOH},{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.4 (q, 2H, CH2), 7.1-8.3 (m, 5H, Ar-H), 8.12 (s, 1H, isoxazolylH); MS (EI, 70 EV): $m / z 201\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ (201.23): C, 65.66 ; $\mathrm{H}, 5.51$; N , 20.88%. Found: C, 65.46; H, 5.53; N, 21.00.

5-Ethyl-4-(4-methylphenylazo)isoxazole (7b).
This compound was obtained in 67% yield, $\mathrm{mp} 81^{\circ} \mathrm{C}$; yellow crystals from dilute $\mathrm{AcOH},{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.13$ (t , $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.4 (s,3H, CH_{3}), 3.1 (q, 2H, CH2), 7.4 (d, 2H, Ar-H), 7.9 (d, 2H, Ar-H), 8.55 (s, 1H,isoxazolyl H); MS (EI, 70 EV): m/z $215\left(\mathrm{M}^{+}\right)$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (215.25): C, 66.96; H, 6.09; N , 19.52%. Found: C, 66.76; H, 6.10; N, 19.70.

5-Ethyl-4-(4-nitrophenylazo)isoxazole (7c).
This compound was obtained in 75% yield, mp $131^{\circ} \mathrm{C}$; dark brown crystals from AcOH, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.15$ (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.13 (q, 2H, CH2), 8.3 (d, 2H, Ar-H), 8.7 (d, 2H, Ar$\mathrm{H}), 8.73$ (s, 1 H , isoxazolyl-H); ${ }^{13} \mathrm{C}$ NMR: $\delta=8.1\left(\mathrm{CH}_{3}\right), 33.5$ $\left(\mathrm{CH}_{2}\right), 119.6$ (C-4), 120.6, 126.3, 138.4, 143.3 (phenyl carbon), 147.5 (C-3), 148.9 (C-5); MS (EI, 70 EV): $m / z 246\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ (246.22): C, 53.66; H, 4.09; N , 22.75%. Found: C, 53.72; H, 3.99; N, 22.90.

5-Ethyl-4-(4-methoxyphenylazo)isoxazole (7d).
This compound was obtained in 72% yield, $\mathrm{mp} 95^{\circ} \mathrm{C}$; pale brown crystals from $\mathrm{AcOH},{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.6$ (q, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.7\left(\mathrm{~S}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.2(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.5(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-$ H), 8.1 (s, 1H,isoxazolyl-H); MS (EI, 70 EV): m/z 231 (${ }^{+}$).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (231.25): C, $62.33 ; \mathrm{H}, 5.67$; N, 18.17%. Found: C, 62.13; H, 5.76; N, 18.20.

2-[(4-Nitrophenyl)hydrazono]-3-oxo-pentanenitrile (8).
Mixture of hydroxylamine hydrochloride ($0.69 \mathrm{~g}, 10 \mathrm{mmol}$), ammonium acetate $(0.77 \mathrm{~g}, 10 \mathrm{mmol})$ and arylhydrazonopentanal 2c (10 mmol) was placed in the microwave oven and heated for 10 min at full power. The resulting product was washed with ethanol and crystallized from ethanol. This compound was obtained in 95% yield, mp $212{ }^{\circ} \mathrm{C}$; dark brown crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-DMSO): $\delta=1.3\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.4(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 7.5 (d, $\left.2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.6(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 11.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=8.9\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 116.9(\mathrm{CN}), 115.4,126.5$, 133.7, 143.2 (phenyl carbon), 148.6 (C-2), 198.9 (CO); MS (EI, $70 \mathrm{EV}): \mathrm{m} / \mathrm{z} 247[\mathrm{M}+1)]^{+}$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ (246.22): C, 53.66; H, 4.10; N , 22.75%. Found: C, 53.61; H, 4.00; N, 22.69.

Preparation of Pyrimidine Derivatives 11a-d, and Pyrimido[1,2-a]benzimidazole Derivatives 14a,b.

General Procedures.
Method A, Thermal Reaction.
One of the 2-arylhydrazonopentanals $\mathbf{2 a}, \mathbf{c}$ (10 mmol) in ethanol (30 ml) was treated with one of the heterocyclic amines 10a-d, 13 (10 mmol). The mixture was heated under reflux for $4-6 \mathrm{~h}$ and allowed to cool at room temperature. The solid product was collected by filtration and crystallized from the proper solvent.
Method B, Microwave Heating.
A mixture of arylhydrazonopentanal $\mathbf{2 a}(10 \mathrm{mmol})$ with one of the heterocyclic amines 10a, $\mathbf{1 3}(10 \mathrm{mmol})$ was placed in the microwave oven and heated for 2 min at full power. The resulting product was washed with ethanol and crystallized from the proper solvent.

7-Ethyl-6-phenylazo-1,2,4-triazolo[1,5-a]pyrimidine (11a).

From a mixture of 2a and 10a after 360 min by Method A, reflux yielded 65% while Method B yielded 97% after heating for 2 min in a domestic microwave oven; mp $149{ }^{\circ} \mathrm{C}$; orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.4$ ($\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $3.7\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.6-7.9(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 9.2 (s, 1H, H-5); MS (EI, 70 EV): m/z 252 (M+).

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6}$ (252.28): C, 61.89; H, 4.79; N, 33.31%. Found: C, 61.79; H, 4.81; N, 33.41.

2-Phenyl-6-phenylazo-7-ethylpyrazolol[1,5-a]pyrimidine (11b).

From a mixture of 2a and $\mathbf{1 0 b}$ after 360 min . reflux by Method A yielded 79% while Method B yielded 99% after heating for 2 min in domestic microwave oven. Mp $182^{\circ} \mathrm{C}$; orange crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.4\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.8(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.3 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$), 7.3-7.4 (m, 10H, Ar-H), $8.9(\mathrm{~s}, 1 \mathrm{H}$, H-5); MS (EI, 70 EV): m/z 327 (M+).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5}$ (327.39): C, 73.37; H, 5.23; N, 21.39%. Found: C, 73.19; H, 5.31; N, 21.20.

2-(4-Chlorophenyl)-6-(4-nitrophenylazo)-7-ethylpyrazolol[1,5a]pyrimidine (11c).

This compound was obtained in 80% yield, from a mixture of 2c and 10c, after 4-6 h reflux; $\mathrm{mp}>300^{\circ} \mathrm{C}$; dark red crystals from ethanol/DMF (2:1), ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.59\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.3-8.5(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.3(\mathrm{~s}$, 1H, H-5); MS (EI, 70 EV): m/z 406 (M+).
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{6} \mathrm{O}_{2}$ (406.83): C, $59.05 ; \mathrm{H}, 3.72$; N, 20.66\%. Found: C, 59.20; H, 3.69; N, 20.74.

2-Phenyl-3-bromo-6-(4-nitrophenylazo)-7-ethylpyrazolol[1,5-a]pyrimidine (11d).

This compound was obtained in 85% yield, from a mixture of 2c and $\mathbf{1 0 d}$ after $4-6 \mathrm{~h}$ reflux; mp $194{ }^{\circ} \mathrm{C}$; dark brown crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.5(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.3-8.2 (m, 9H, Ar-H), 9.26 (s, 1H, H-5); MS (EI, 70 EV): $m / z 453[\mathrm{M}+2]^{+}$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrN}_{6} \mathrm{O}_{2}$ (451.28): C, 53.23 ; $\mathrm{H}, 3.35$; N, 18.62\%. Found: C, 53.16; H, 3.45 N, 18.53.

3-Phenylazo-4-ethylpyrimido[1,2-a]benzimidazole (14a).

This compound was obtained in 60% yield by Method A, after 360 min. reflux from a mixture of $\mathbf{2 a}$ and $\mathbf{1 3}$, while Method B yielded 95% after heating for 2 min in a domestic microwave oven at full power; $\mathrm{mp} 231^{\circ} \mathrm{C}$; brown crystals from methanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.6\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.2-7.7$ (m, 9H, Ar-H), 9.2 (s, 1H, H-2); MS (EI, 70 EV): m/z 301 (M+).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5}$ (301.35): C, 71.74; H, 5.02; N, 23.24%. Found: C, 71.87; H, 4.99; N, 23.05.

3-(4-Nitrophenylazo-4-ethylpyrimido [1,2-d]benzimidazole (14b).
This compound was obtained in 72% yield, from a mixture of 2c and $\mathbf{1 3}$ after reflux for $360 \mathrm{~min} . \mathrm{mp} 185^{\circ} \mathrm{C}$; brown crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.6(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.4 (d, 2H, Ar-H), 7.7 (d, 2H, Ar-H), 8.2-8.3 (m, 4H, Ar-H), 9.3 (s, 1H, H-2); MS (EI, 70 EV): m/z 346 (M+).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ (346.35): C, 62.42; H, 4.07; N , 24.26%. Found: C, 62.33; H, 3.99; N, 24.30.
Ethyl-2-(4-nitrophenyl)-3oxo-6-propionyl-2,3-dihydropyri-dazine-4-carboxylate (16).
To a solution of 3-oxo-2-(4-nitrophenylhydrazono)pentanal (2c) $(10 \mathrm{mmol})$ in ethanol $(30 \mathrm{ml})$, diethylmalonate $(1.6 \mathrm{~g}, 10$ mmol) and piperidine (12 mmol) was added. The mixture was refluxed for 6 h , then left to cool at room temperature. The solid product, so formed, was collected by filtration and recrystallized from ethanol. This compound was obtained in 85% yield, mp $106{ }^{\circ} \mathrm{C}$; dark red crystals from dilute ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6} DMSO): $\delta=1.07\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.4\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.4(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), 4.2 (q, 2H, CH 2), 7.3 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 7.9-8.1 (m, 4H, Ar-H); MS (EI, 70 EV): m/z $346(\mathrm{M}+1)^{+}$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$ (345.31): C, $55.65 ; \mathrm{H}, 4.38$; N, 12.17%. Found: C, 55.56 ; H, 4.29 ; N, 12.21 .
Preparation of 2,3-Dihydropyridazines Derivatives 18a-g.
General Procedure.
To a magnetically stirred solution of $\mathrm{Ph}_{3} \mathrm{P}(2.6 \mathrm{~g}, 10 \mathrm{mmol})$ and each of 2-arylhydrazonopentanals (2a-d) or 2-arylhydra-
zonopropanals ($2 \mathrm{e}-\mathrm{g}$) $(10 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(10 \mathrm{ml})$ was added drop wise a solution of dimethyl acetylenedicarboxylate (1.4 g , 10 mmol). The mixture was left at room temperature overnight, and then treated with ethanol and the solid product was collected by filtration and crystallized from the proper solvent.

Dimethyl-2-phenyl-6-propionyl-2, 3-dihydropyridazine-3,4dicarboxylate (18a).

This compound was obtained in 92% yield, mp $114^{\circ} \mathrm{C}$; red crystals from methanol/ethanol, IR (KBr): v 1744, 1716 (CO ester), $1618 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.1$ ($\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $2.8\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.1 (s, 1H, NCH), 7.4 (s, 1H, H-5), 7.2-7.6 (m, 5H, Ar-H); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 271\left(\mathrm{M}^{+}-59\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ (330.34): C, 61.81; H, 5.49 ; N, 8.48%. Found: C, 61.93 ; H, 5.45 ; N, 8.35 .

Dimethyl-2-p-tolyl-6-propionyl-2,3-dihydropyridazine-3,4dicarboxylate (18b).

This compound was obtained in 81% yield, $\mathrm{mp} 258^{\circ} \mathrm{C}$; red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.07(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), 2.3 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.4\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 6.3-6.8(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.5$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 344$ (M^{+}).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$ (344.36): C, $62.78 ; \mathrm{H}, 5.85$; N, 8.13%. Found: C, $62.59 ;$ H, 5.76 ; N, 8.33 .

Dimethyl-2(4-nitrophenyl)-6-propionyl-2,3-dihydropyridazine-3,4-dicarboxylate (18c).

This compound was obtained in 95% yield, $\mathrm{mp} 211^{\circ} \mathrm{C}$; red crystals from methanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.07(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $2.4\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.2 (s, 1H, NCH), 7.4 (s, 1H, H-5), 6.7-7.9 (m, 4H, Ar-H); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 375\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$ (375.33): C, 54.40; H, 4.57; N, 11.20%. Found: C, 54.21 ; H, 4.66; N, 11.30.
Dimethyl-2-(4-methoxyphenyl)-6-propionyl-2,3-dihydropyri-dazine-3,4-dicarboxylate (18d).

This compound was obtained in 90% yield, mp $113{ }^{\circ} \mathrm{C}$; red crystals from ethanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.18(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $2.9\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.05 (s, 1H, NCH), 7.6 (s, 1H, H-5), 6.9-7.4 (m, 4H, Ar-H); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z} 361[\mathrm{M}+1]^{+}$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ (360.36): C, $59.99 ; \mathrm{H}, 5.59$; N, 7.77%. Found: C, 60.10; H, 5.49; N, 7.95.
Dimethyl-6-(4-acetylbenzoyl)-2-phenyl-2,3-dihydropyridazine-3,4-dicarboxylate (18e).

This compound was obtained in 82% yield, mp $165^{\circ} \mathrm{C}$; red crystals from dioxan, IR (KBr): v 1744, 1715(CO ester), 1615 $\mathrm{cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.6(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 6.4-7.9(\mathrm{~m}, 9 \mathrm{H}$, Ar-H), 8.11 (s, 1H, H-5); MS (EI, 70 EV): m/z 420 (M+).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ (420.42): C, $65.71 ; \mathrm{H}, 4.79$; N, 6.66%. Found: C, 65.70; H, 4.71; N, 6.56 .
Dimethyl-6-(4-acetylbenzoyl)-2-(4-nitrophenyl)-2,3-dihydropy-ridazine-3,4-dicarboxylate (18f).

This compound was obtained in 82% yield, mp $170^{\circ} \mathrm{C}$; red crystals from methanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6$ ($\mathrm{s}, 3 \mathrm{H}$,
CH_{3}), $3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH})$, 6.6-8.05 (m, 8H, Ar-H), 8.11 (s, 1H, H-5); MS (EI, 70 EV): m/z 466 [M+1] ${ }^{+}$.
Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}$ (465.42): C, $59.36 ; \mathrm{H}, 4.11 ; \mathrm{N}$, 9.03%. Found: C, $59.54 ;$ H, 4.08 ; N, 8.89 .
Dimethyl-6-(4-acetylbenzoyl)-2-(4-methoxyphenyl)2,3-dihy-dropyridazine-3,4-dicarboxylate (18g).
This compound was obtained in 79% yield, mp $147^{\circ} \mathrm{C}$; dark red crystals from dilute methanol, ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.6$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $6.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 6.9(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.5(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.6 (s, 1H, H-5), 7.9 (d, 2H, Ar-H), 8.1 (d, 2H, Ar-H); MS (EI, 70 EV): $m / z 450\left(\mathrm{M}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7}$ (449.44): C, $64.14 ; \mathrm{H}, 4.71$; N, 6.23 \%. Found: C, $63.99 ;$ H, 4.69 ; N, 6.31 .

8-Hydrazino-1-phenyl-3-propionyl-6,8a-dihydro-1 H -pyri-dazino[4,5-c]pyridazin-5-one (22).
A mixture of compound 18a (10 mmol) in $\mathrm{EtOH}(30 \mathrm{ml})$ was treated with hydrazine hydrate (20 mmol). The mixture was heated under reflux for 1 h and allowed to cool to r.t. The solid product was collected by filtration and crystallized from EtOH . This compound was obtained in 90% yield, mp $177^{\circ} \mathrm{C}$; pale yellow crystals from ethanol/dioxan (1:1), IR (KBr): v 3420, 3330, $2918\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1679$ (ring CO), $1614 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}{ }^{-}$ DMSO): $\delta=1.06$ (t, 3H, CH3), $2.4\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.7(\mathrm{~s}, 1 \mathrm{H}$, NCH), 6.7 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), 7-7.4 (m, 7H, Ar-H, NH2), 9.2 (br s, 1H,

NH), 9.9 (br s, 1H, NH); MS (EI, 70 EV): m/z 312(M+).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2}$ (312.33): C, $57.68 ; \mathrm{H}, 5.16$; N , 26.91%. Found: C, $57.62 ; \mathrm{H}, 5.10 ; \mathrm{N}, 26.85$.

REFERENCES AND NOTES

[1] F. Al-Omran, M. M. Abdel-Khalik, A. Abuel-Khair and M. H. Elnagdi, OPPI, 29(3) 285 (1997).
[2] K. M. Al-Zaydi, E. A. Hafez, and M. H. Elnagdi, J. Chem. Research (S), 154 (2000); (M) 510 (2000).
[3] H. Bahbehani, M. M. Abdel-Khalik, and M. H. Elnagdi, OPPI, 31, 551 (1999).
[4] M. M. Abdel-Khalik, S. M. Agamy and M. H. Elnagdi. Synthesis, 1861 (2001).
[5] N. A. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, K. Kaul and A. Kumar; Tetrahedron, 57, 1609 (2001).
[6] A. S. Matlack in "Introduction to Green Chemistry" Marcel Dekker Inc., New York, Basel, (2001).
[7] J. Clark and D. MacQuarrie in "Handbook of Green Chemistry and Technology" Blackwell Science Ltd., Paris, (2002).
[8] M. M. Abdel-Khalik, S. M. Agamy and M. H. Elnagdi. Z. Naturforsch., 55b, 1211 (2000).
[9] A. A. Elassar and A. A. Elkhair, Tetrahedron, 59, 8463 (2003).
[10] A. Almazroa, M. H. Elnagdi, and A .M. SalahEl-Din J. Heterocyclic Chem., 41, 267 (2004).
[11] M. A. Al-Shiekh, A. M. Salah El-Din, E. A. Hafez, and M. H. Elnagdi, J. Chem. Research 3, 174 (2004).

